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Motivated by studies of comblike structures, we present a generalization of the classical diffusion equation
to model anisotropic, anomalous diffusion. We assume that the diffusive flux is given by a diffusion tensor
acting on the gradient of the probability density, where each component of the diffusion tensor can have its
own scaling law. We also assume scaling laws that have an explicit power-law dependence on space and time.
Solutions of the proposed generalized diffusion equation are consistent with previously derived asymptotic
results for the probability density on comblike structures.
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I. INTRODUCTION

Anomalous diffusion and its applications to fractal and
disordered systems have been intensively studied for over
two decades �1,2�. One object of particular interest in these
studies is the probability density of random walkers. Due to
the presence of obstacles and dangling ends at all scales, the
probability density can exhibit non-Gaussian behavior so that
it no longer satisfies the classical diffusion equation. The
exact nature of the probability density for anomalous diffu-
sion and the differential equation, if any, that it satisfies are
still open questions.

O’Shaughnessy and Procaccia �3,4� first proposed an
equation for isotropic diffusion on fractals based on a prob-
ability balance supplemented with the usual gradient law for
diffusive flux, but where the diffusion coefficient scales with
distance to a power. This scaling gave rise to anomalous
diffusion with a non-Gaussian probability density. Using a
different method, Guyer �5� directly obtained a different
stretched Gaussian for the asymptotic form of the probability
density of random walkers on the Sierpinski gasket. Guyer
attributed the two different results to different regimes of
validity. Various other authors also obtained similar stretched
Gaussians for diffusion on a wide range of structures, includ-
ing percolation clusters and combs �6–8�. In fact, Havlin and
ben-Avraham �1� noted the similarity of these results with
those for anomalous continuous-time random walks and self-
avoiding walks obtained by a variety of different techniques.
In addition to being supported by numerical simulations �1�,
these stretched Gaussians are also consistent with rigorous
derivations of bounds on the probability density for diffusion
in several fractals �9–11�.

Alternatively, Metzler et al. �12� and Giona and Roman
�13,14� proposed differential equations involving fractional
time derivatives. Furthermore Compte and Jou �15� proposed
a nonlinear constitutive relation for the diffusive flux to ac-
count for the anomalous diffusion. All these proposed equa-
tions do give rise to anomalous diffusion. In order to deter-
mine which, if any, was appropriate for diffusion on a
specific fractal, Schulzky et al. �16� compared the solutions
of the proposed equations with extensive random walk simu-
lations on the Sierpinski gasket and showed that, while there
may be some partial agreement, none agreed with the simu-
lation results over a wide range of time scales.

Recently Campos et al. �17� proposed a generalized dif-
fusion equation for isotropic diffusion based on a probability

balance and a gradient law for the diffusive flux. In contrast
to previous work, they allowed the diffusion coefficient to
depend on space and time, which yielded the desired
stretched Gaussian for the probability density.

Here we extend this work to present a generalization of
the classical diffusion equation that models anisotropic
anomalous diffusion. We are motivated by results for comb-
like structures that show that diffusion along the backbone
can be significantly different from that along the teeth. In
fact, a steepest descent approximation for the asymptotic
probability density on a comb yields an anisotropic stretched
Gaussian �2,7�. To account for the anisotropy we introduce a
diffusion tensor where each component can have its own
scaling law. As in Campos et al. �17�, we allow for an ex-
plicit space and time dependence in the scaling of the diffu-
sion coefficients and thereby obtain solutions that are consis-
tent with the previously obtained anisotropic stretched
Gaussians for comblike structures. The explicit time depen-
dence of the diffusion tensor is critical to this consistency
and can be attributed to the tendency for random walkers to
spend more time wandering in the teeth as time increases so
that the effective diffusion along the comb backbone de-
creases in time.

This work indicates that a unified description of anoma-
lous diffusion can describe a wide range of objects where the
response can be anisotropic or isotropic. There are limita-
tions however to using differential equations to model trans-
port on fractals and other complex structures. Arkhincheev
and Baskin �18–20� have shown how nonlocal effects such
as a dependence on history arise. Our work is restricted to
the asymptotic regime where such effects take a simpler
form. Furthermore, detailed random walk simulations for the
Sierpinski gasket indicate that the probability density can be
nonanalytic as well as multiple valued �4,21�. Thus the prob-
ability density cannot always satisfy a differential equation in
the classical sense. However, its asymptotic or leading order
behavior may be smooth and effectively described by a dif-
ferential equation. We therefore interpret here the probability
density as a smooth approximation to the actual probability
density. Another approach suggested by Davison et al. �21�
introduces equivalence classes among the points of a fractal.
They showed then that the probability distribution is smooth
for each such equivalence class. The probability density can
also exhibit periodic oscillations in space and time �22�.
Such oscillations are not captured by our proposed general-

PHYSICAL REVIEW E 74, 061103 �2006�

1539-3755/2006/74�6�/061103�4� ©2006 The American Physical Society061103-1

http://dx.doi.org/10.1103/PhysRevE.74.061103


ized diffusion equation. There are also indications of multi-
fractal response not accounted for in the stretched Gaussians
�23,24�. We ignore such complications in the following.

II. ISOTROPIC DIFFUSION

We first consider the special case of isotropic diffusion,
which is commonly assumed for many fractals. This case has
been treated by Campos et al. �17�. Let the fractal dimension
be denoted by df. We assume that at time t=0 simple inde-
pendent random walkers are placed at the origin. Due to the
isotropy, the diffusive growth will be radially symmetric.
The mean-squared displacement of the walkers is �25�

�r2�t�� � t2/dw, �1�

where r is the Euclidean distance from the origin and dw the
random walk dimension. For this case, Mosco �8� proposed
the long-time asymptotic probability density,

P�r,t� �
1

tds/2
exp�− c	 rdw

t

dmin/�dw−dmin�� , �2�

with dmin the exponent for the chemical distance �2� and ds
the spectral dimension given by

ds =
2df

dw
. �3�

The expression �2� is consistent with other asymptotic re-
sults for a variety of structures �6,7�. The probability density
�2� indicates that three scaling exponents are important for
isotropic diffusion: dw, ds, and dmin. Given the relation �3�,
these three exponents are also equivalent to dw, df, and dmin.
Henceforth, we assume that �2� is valid and construct a gen-
eralized diffusion equation that yields �2� as the solution. The
procedure is to use a probability balance supplemented with
a constitutive relation for the diffusive flux. The probability
balance in this radially symmetric case was given by
O’Shaughnessy and Procaccia �3,4�,

�P�r,t�
�t

=
1

rdf−1

�

�r
�rdf−1Jr�r,t�� . �4�

For the radial flux Jr�r , t�, we assume the gradient law

Jr�r,t� = Dr�r,t�
�P�r,t�

�r
, �5�

where the radial diffusion coefficient Dr is allowed to be a
function of space and time. Campos et al. �17� first showed
that the time dependence is important. Consistency of �4�
and �5� with the desired solution �2� now requires that the
diffusion coefficient Dr have the following form:

Dr�r,t� =
�dw − dmin�

cdw
2 dmin

	 r

t

�dw−2dmin�/�dw−dmin�

=
�dw − dmin�

cdw
2 dmin

	 r2

t

	 t

rdw

dmin/�dw−dmin�

. �6�

This diffusion coefficient is defined by the gradient law �5�
and generally differs from the coefficient D defined by

D �
�r2�t��

t
� t�2/dw�−1. �7�

In the special case of regular diffusion with dw=2, the two
definitions coincide.

In conjunction with the probability balance �4� and gradi-
ent law �5�, �6� leads to the generalized diffusion equation,

cdw
2 dmin

�dw − dmin�
rdf−1�P�r,t�

�t

=
�

�r
�	 r

t

�dw−2dmin�/�dw−dmin�

rdf−1�P�r,t�
�r

�
=

�

�r
�	 rdw

t

�dw−2dmin�/�dw−dmin�

rdf−dw+1�P�r,t�
�r

� . �8�

This equation is equivalent to within a constant to that ob-
tained by Campos et al. �17�. Direct substitution verifies that
�2� is the solution to �8�.

Note that �2� is consistent with the rigorous bounds ob-
tained by Barlow and Perkins �9� for the Sierpinski gasket
�for which dmin=1�,

c1

tds/2
exp�− c2	 rdw

t

1/�dw−1��

� P�r,t� �
c3

tds/2
exp�− c4	 rdw

t

1/�dw−1�� , �9�

where the ci are constants. It is an inequality because the
actual solution oscillates in space and time due to the pres-
ence of obstacles at all scales. These oscillations are not
captured by the differential equation �8�.

III. ANISOTROPIC DIFFUSION ON COMBS

We now extend these ideas to allow for anisotropic diffu-
sion. For concreteness we consider a n-dimensional comb
with teeth orthogonal to the backbone. The teeth and back-
bone are taken parallel to Cartesian coordinate axes xi. Again
simple random walkers are placed at the origin on the back-
bone. In this case, the response can be anisotropic so that the
mean-squared displacements of the walkers scale with the
time t as �1�

�xi
2�t�� � t2/dwi. �10�

Here dwi
is the random walk dimension in the xi direction.

For example, for the case of the two-dimensional �2D� comb
with the backbone along the x axis and teeth with infinite
length parallel to the y axis, we have �26�

dwx
= 4, dwy

= 2, �11�

so the random walkers will undergo anomalous diffusion
along the backbone but regular diffusion along the teeth. For
the hierarchical three-dimensional �3D� comb with backbone
along the x axis and teeth with infinite length parallel to the
y and z axes �26�,

dwx
= 8, dwy

= 4, dwz
= 2. �12�
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The anisotropic behavior is also evident in the form of the
probability density P�r , t�. The long-time asymptotic re-
sponse has been estimated to be the anisotropic stretched
Gaussian �7�

P�r,t� �
1

tds/2
exp��

i=1

n

− ai	 xidwi

t

1/�dwi

−1�� , �13�

where the spectral dimension ds in this case satisfies

ds

2
= �

i=1

n dfi

dwi

= �
i=1

n
1

dwi

, �14�

since the fractal dimensions dfi
=1 for each i. Note that for

linear structures, such as the combs considered here, we also
have dmin=1. Thus the scaling exponents important for dif-
fusion on combs are the spectral dimension ds and the n
random walk dimensions dwi

.
In particular, for the 2D case of infinite tooth length, sub-

stitution of �11� into �13� yields

P�x,y,t� �
1

t3/4 exp	−
axx4/3

t1/3 −
ayy

2

t

 . �15�

In the anisotropic case considered here, the conservation
of probability in local form is given by

�

�t
P�r,t� = div J�r,t� = �

i=1

n
�

�xi
Ji�r,t� , �16�

where J�r , t� is the flux vector. We now need a constitutive
relation for J. We assume a relation linear in the gradient of
probability

J�r,t� = D�r,t�grad P�r,t� , �17�

where D�r , t� is the effective diffusion tensor which is a
function of position r and time t. Substitution of �17� into the
probability balance �16� leads to

�

�t
P�r,t� = �

i,j

n
�

�xi
	Dij�r,t�

�P�r,t�
�xj


 . �18�

An explicit relation for the diffusion tensor D is still needed.
The classical diffusion equation is obtained when the diffu-
sion coefficients Dij are constants. Consistency with the an-
isotropic stretched Gaussian �13� requires the following
form:

Dij =
�dwi

− 1�

aidwi

2 	 xi
t

�dwi

−2�/�dwi
−1�

�ij

=
�dwi

− 1�

aidwi

2 	 xi
2

t

	 t

xidwi

1/�dwi

−1�

�ij , �19�

which yields the generalized diffusion equation

�P

�t
= �

i=1

n �dwi
− 1�

aidwi

2

�

�xi
�	 xi

t

�dwi

−2�/�dwi
−1��P

�xi
� . �20�

Direct substitution of �13� verifies this result.

Equation �20� is our main result. It describes anisotropic
anomalous diffusion on n-dimensional combs. The only scal-
ing properties involved are those that arise in the expression
�19� for the diffusion tensor. In the case of regular diffusion
with constant diffusion coefficients Dij and random walk di-
mensions dwi

=2, the differential equation �20� reduces to the
classical anisotropic diffusion equation

�P

�t
= �

i=1

n
1

4ai

�2P

�xi
2 . �21�

In the case of 2D combs with infinite tooth-length, �19� be-
comes

Dxx =
3

16ax
	 x

t

2/3

, Dyy =
1

4ay
, Dxy = 0, �22�

and the generalized diffusion equation �20� becomes

�P

�t
=

3

16ax

�

�x
�	 x

t

2/3�P

�x
� +

1

4ay

�2P

�y2 . �23�

As in the radially symmetric case �6�, the diffusion coef-
ficients �19� depend explicitly on time. As time increases, the
diffusion coefficients at a fixed point decrease. If we accept
the probability balance �16�, the gradient law for the flux
�17� and the asymptotic solution �13�, then this time depen-
dence is necessary for consistency, in agreement with Cam-
pos et al. �17� for isotropic situations. For 2D combs, we can
intuitively interpret it as the tendency for more and more
random walkers to wander off and get stuck in the teeth as
time increases, so the effective diffusion along the backbone
appears to slow down with time.

IV. DISCUSSION

We have presented a unified description of the long-time
asymptotic regime of anomalous diffusion that allows for
anisotropic response, which is observed in comblike struc-
tures. The result is a generalized diffusion equation in which
the diffusion coefficients are functions of space and time.

In an alternative approach, Arkhincheev and Baskin
�18–20� developed an explicit model for diffusion on 2D
combs based on a linear diffusion equation,

	 �

�t
− Dxx��y�

�2

�x2 − Dyy
�2

�y2
P�x,y,t� = 0, �24�

where � is the Dirac delta function. The solution along the
axis y=0 can be expressed as �20�

P�x,0,t� = Dxx
�2

�x2�
−�

t P�x,0,��
��Dyy�t − ��

d� . �25�

This expression involves a history term similar in form to the
Basset history term for drag on an unsteady sphere in a fluid
�27,28�. Differentiation of �25� by fractional degree 1

2 yields

�1/2P�x,0,t�
�t1/2 = Dxx

�2P�x,0,t�
�x2 . �26�

Thus the probability density along the backbone satisfies an
integro-differential equation involving a fractional time de-
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rivative of order 1
2 . The asymptotic response is given by �18�

P�x,0,t� �
1

t3/4 exp	−
cx4/3

t1/3 
 , �27�

which corresponds to �15�.
In order to make a comparison with our derived equation

�23�, we can differentiate �25� with respect to time to obtain

�P�x,0,t�
�t

= Dxx
�2

�x2

�

�t
�

−�

t P�x,0,��
��Dyy�t − ��

d� . �28�

In this context, we can view �23� as an asymptotic form of
�28�. It shows that asymptotic response is governed by a

simpler equation where the diffusion coefficient can be
viewed as a function of space and time rather than a func-
tional of the total history. Note however that �23� is not re-
stricted to the axis y=0.

Furthermore Campos et al. �17,29� found that �8� can re-
produce the best-known asymptotic results for isotropic dif-
fusion on fractals. We would also expect �20� to be useful in
reproducing asymptotic results for anisotropic diffusion.
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